Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Brown, Sam Paul (Ed.)Bacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. TheVibrio choleraepathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at cell-scale resolution. smFISH analyses ofV. choleraebiofilm regulatory and structural genes demonstrate that, as biofilms mature, overall matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression becomes largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression. Quorum sensing signaling is uniform across the biofilm, and thus, c-di-GMP-signaling alone sets the regional matrix gene expression pattern. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells.more » « lessFree, publicly-accessible full text available May 16, 2026
-
Many bacteria live in polymeric fluids, such as mucus, environmental polysaccharides, and extracellular polymers in biofilms. However, laboratory studies typically focus on cells in polymer-free fluids. Here, we show that interactions with polymers shape a fundamental feature of bacterial life—how they proliferate in space in multicellular colonies. Using experiments, we find that when polymer is sufficiently concentrated, cells generically and reversibly form large serpentine “cables” as they proliferate. By combining experiments with biophysical theory and simulations, we demonstrate that this distinctive form of colony morphogenesis arises from an interplay between polymer-induced entropic attraction between neighboring cells and their hindered ability to diffusely separate from each other in a viscous polymer solution. Our work thus reveals a pivotal role of polymers in sculpting proliferating bacterial colonies, with implications for how they interact with hosts and with the natural environment, and uncovers quantitative principles governing colony morphogenesis in such complex environments.more » « lessFree, publicly-accessible full text available January 17, 2026
-
In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains—which, in turn, influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth or unstable and develops fingerlike protrusions. We establish quantitative principles describing when these different interfacial behaviors arise and find good agreement with both the results of previous experimental reports as well as new experiments performed here. Our work, thus, helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities as well as a broader range of proliferating active systems. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
-
Season length and its associated variables can influence the expression of social behaviours, including the occurrence of eusociality in insects. Eusociality can vary widely across environmental gradients, both within and between different species. Numerous theoretical models have been developed to examine the life history traits that underlie the emergence and maintenance of eusociality, yet the impact of seasonality on this process is largely uncharacterized. Here, we present a theoretical model that incorporates season length and offspring development time into a single, individual-focused model to examine how these factors can shape the costs and benefits of social living. We find that longer season lengths and faster brood development times are sufficient to favour the emergence and maintenance of a social strategy, while shorter seasons favour a solitary one. We also identify a range of season lengths where social and solitary strategies can coexist. Moreover, our theoretical predictions are well matched to the natural history and behaviour of two flexibly eusocial bee species, suggesting that our model can make realistic predictions about the evolution of different social strategies. Broadly, this work reveals the crucial role that environmental conditions can have in shaping social behaviour and its evolution and it underscores the need for further models that explicitly incorporate such variation to study the evolutionary trajectories of eusociality.more » « less
-
A hallmark of biomolecular condensates formed via liquid-liquid phase separation is that they dynamically exchange material with their surroundings, and this process can be crucial to condensate function. Intuitively, the rate of exchange can be limited by the flux from the dilute phase or by the mixing speed in the dense phase. Surprisingly, a recent experiment suggests that exchange can also be limited by the dynamics at the droplet interface, implying the existence of an ‘interface resistance’. Here, we first derive an analytical expression for the timescale of condensate material exchange, which clearly conveys the physical factors controlling exchange dynamics. We then utilize sticker-spacer polymer models to show that interface resistance can arise when incident molecules transiently touch the interface without entering the dense phase, i.e., the molecules ‘bounce’ from the interface. Our work provides insight into condensate exchange dynamics, with implications for both natural and synthetic systems.more » « less
-
Abstract Season length and its associated variables can influence the expression of social behaviors, including the occurrence of eusociality in insects. Eusociality can vary widely across environmental gradients, both within and between different species. Numerous theoretical models have been developed to examine the life history traits that underlie the emergence and maintenance of eusociality, yet the impact of seasonality on this process is largely uncharacterized. Here, we present a theoretical model that incorporates season length and offspring development time into a single, individual-focused model to examine how these factors can shape the costs and benefits of social living. We find that longer season lengths and faster brood development times are sufficient to favor the emergence and maintenance of a social strategy, while shorter seasons favor a solitary one. We also identify a range of season lengths where social and solitary strategies can coexist. Moreover, our theoretical predictions are well-matched to the natural history and behavior of two flexibly-eusocial bee species, suggesting our model can make realistic predictions about the evolution of different social strategies. Broadly, this work reveals the crucial role that environmental conditions can have in shaping social behavior and its evolution and underscores the need for further models that explicitly incorporate such variation to study evolutionary trajectories of eusociality.more » « less
-
Abstract Many bacteria inhabit thin layers of water on solid surfaces both naturally in soils or on hosts or textiles and in the lab on agar hydrogels. In these environments, cells experience capillary forces, yet an understanding of how these forces shape bacterial collective behaviors remains elusive. Here, we show that the water menisci formed around bacteria lead to capillary attraction between cells while still allowing them to slide past one another. We develop an experimental apparatus that allows us to control bacterial collective behaviors by varying the strength and range of capillary forces. Combining 3D imaging and cell tracking with agent-based modeling, we demonstrate that capillary attraction organizes rod-shaped bacteria into densely packed, nematic groups, and profoundly influences their collective dynamics and morphologies. Our results suggest that capillary forces may be a ubiquitous physical ingredient in shaping microbial communities in partially hydrated environments.more » « less
-
Phase separation of biomolecules can facilitate their spatiotemporally regulated self-assembly within living cells. Due to the selective yet dynamic exchange of biomolecules across condensate interfaces, condensates can function as reactive hubs by concentrating enzymatic components for faster kinetics. The principles governing this dynamic exchange between condensate phases, however, are poorly understood. In this work, we systematically investigate the influence of client–sticker interactions on the exchange dynamics of protein molecules across condensate interfaces. We show that increasing affinity between a model protein scaffold and its client molecules causes the exchange of protein chains between the dilute and dense phases to slow down and that beyond a threshold interaction strength, this slowdown in exchange becomes substantial. Investigating the impact of interaction symmetry, we found that chain exchange dynamics are also considerably slower when client molecules interact equally with different sticky residues in the protein. The slowdown of exchange is due to a sequestration effect, by which there are fewer unbound stickers available at the interface to which dilute phase chains may attach. These findings highlight the fundamental connection between client–scaffold interaction networks and condensate exchange dynamics.more » « less
-
Many bacteria live in polymeric fluids, such as mucus, environmental polysaccharides, and extracellular polymers in biofilms. However, lab studies typically focus on cells in polymer-free fluids. Here, we show that interactions with polymers shape a fundamental feature of bacterial life—how they proliferate in space in multicellular colonies. Using experiments, we find that when polymer is sufficiently concentrated, cells generically and reversibly form large serpentine “cables” as they proliferate. By combining experiments with biophysical theory and simulations, we demonstrate that this distinctive form of colony morphogenesis arises from an interplay between polymer-induced entropic attraction between neighboring cells and their hindered ability to diffusely separate from each other in a viscous polymer solution. Our work thus reveals a pivotal role of polymers in sculpting proliferating bacterial colonies, with implications for how they interact with hosts and with the natural environment, and uncovers quantitative principles governing colony morphogenesis in such complex environments.more » « less
An official website of the United States government
